Mathematics and Computing

Laboratory

B. Tech.

4st Semester

Roll Number : 21ETMC412031

Department : Mathematics and Statistics

Faculty of Mathematical & Physical Sciences

Ramaiah University of Applied Sciences

LABORATORY ACTIVITY - 7

1. Title of the Laboratory Exercise: Gram – Schmidt orthogonalization process and QR factorisation

2. Introduction and Purpose of Experiment

In this laboratory exercise, students get familiar with orthonormal basis. They also learn to find an orthonormal basis given a set of ordinary vectors using Gram – Schmidt orthogonalization process and decompose the given set of vectors as product of upper triangular matrix and orthonormal matrix using QR factorisation

3. Aim and Objectives

Aim

• Obtaining an orthonormal basis from a given set of vectors.

Objectives

At the end of this lab, the student will be able to:

• Apply Gram – Schmidt orthogonalization process to obtain orthonormal basis

4. Experimental Procedure

• Students are expected to create a document. Also students are expected obtain an orthonormal basis from the given set of vectors in the script file.

5. Calculations/Computations/Algorithms.

Apply Gram–Schmidt orthogonalization process to obtain orthonormal basis and compute QR factorisation from the given set of vectors:

a)
$$\left\{ \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\2\\1\\2 \end{bmatrix}, \begin{bmatrix} 18\\0\\0 \end{bmatrix} \right\}$$

Program:

```
LUD.m × powermethod.m × GRM.m × +
/MATLAB Drive/GRM.m
 1 🗐
        function[]=GRM(A)
 2
        [m,n]=size(A);
 З
        Q=zeros(m,n);
 4
        R=zeros(n,n);
 5 🗗
6 |
        for j=1:n
            v=A(:,j);
 7 中
            for i=1:j-1
                R(i,j)=Q(:,i)'*A(:,j);
 8
 9
                v=v-R(i,j)*Q(:,i);
10
            end
11
              R(j,j)=norm(v);
12
              Q(:,j)=v/R(j,j);
13
        end
14
        fprintf('Orthonormal set\n Q = \n')
15
        disp(Q)
        fprintf('Upper triangular matrix \n R = \n')
16
17
        disp(R)
18
```

Command window:

Command Window
>> A = [2 2 1;-2 1 2;18 0 0];
>> GRM(A)

Results:

```
Orthonormal set
    Q =
         0.1098
                         0.8901
                                        -0.4423
        -0.1098
                                        0.8847
                         0.4531
         0.9879
                        -0.0486
                                           0.1474
   Upper triangular matrix
     R =
                           0.1098
        18.2209
                                          -0.1098
                  0
                           2.2334
                                           1.7964
                  0
                                  0
                                           1.3270
                       \begin{bmatrix} 8 \\ 1 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} 
              \left\{ \begin{array}{c} 1\\ 2\\ 0 \end{array} \right\}
b)
```

Command window:

>> A = [1 2 0; 8 1 -6; 0 0 1]; >> GRM(A) <u>Result:</u>

```
Orthonormal set
 Q =
                0.9923 0
     0.1240
     0.9923 -0.1240 0.0000
            0
                        0 1.0000
Upper triangular matrix
 R =
                1.2403
                              -5.9537
     8.0623
          0 1.8605 0.7442
            0
                     0
                              1.0000
        \left\{ \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} \right\}
```

c)

Command window:

>> A = [1 -1 1; 1 0 1; 1 1 2]; >> GRM(A)

Result:

Orthonormal set Q = 0.5774 -0.7071 0.4082 0.5774 0 -0.8165 0.5774 0.7071 0.4082 Upper triangular matrix R = 0 1.7321 2.3094 0.7071 0 1.4142 0 0.4082 0

$$\mathbf{d} \left\{ \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \begin{bmatrix} 18\\0\\0 \end{bmatrix} \right\}$$

Command window:

Result:

```
Orthonormal set
 Q =
  =
0.1098 0.8901 -0.4423
-0.1098 0.4531 0.8847
0.9879 -0.0486 0.1474
Upper triangular matrix
 R =
                            -0.1098
   18.2209
                0.1098
                            1.7964
1.3270
       0
               2.2334
           0
                  0
```

$$\mathbf{e})\left\{ \begin{bmatrix} 2\\-5\\1 \end{bmatrix}, \begin{bmatrix} 4\\-1\\2 \end{bmatrix} \right\}$$

Command window:

>> A = [2 -5 1; 4 -1 2]; >> GRM(A)

Result:

Orthonormal set Q = 0.4472 -0.8944 -0.8944 0.8944 0.4472 0.4472 Upper triangular matrix R = 4.4721 -3.1305 2.2361 0 4.0249 -0.0000 0 0.0000 0

$$\mathbf{f} \left\{ \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\3\\-1 \end{bmatrix}, \begin{bmatrix} -3\\7\\1\\3 \end{bmatrix} \right\}$$

Command window:

>> A = [1 -1 1 1; 1 1 3 -1 ; -3 7 1 3]; >> GRM(A)

Result:

set		
0.2752	-0.4472	0.9748
0.8808	-0.8944	-0.1393
0.3853	0	0.1741
gular matr	rix	
-6.3317	0.3015	-2.7136
3.3029	3.3029	0.5505
0	0.0000	0.4472
0	0	1.9149
	set 0.2752 0.8808 0.3853 gular matr -6.3317 3.3029 0 0	set 0.2752 -0.4472 0.8808 -0.8944 0.3853 0 gular matrix -6.3317 0.3015 3.3029 3.3029 0 0.0000 0 0 0

Command window:

>> A = [1 1 1 1; -1 4 4 -1; 4 -2 2 0]; >> GRM(A)

Result:

Orthonormal	set		
Q =			
0.2357	0.4264	-0.8733	-0.5494
-0.2357	0.8969	0.3743	-0.1374
0.9428	0.1176	0.3119	-0.8242
Upper trian	gular matr	ix	
R =			
4.2426	-2.5927	1.1785	0.4714
0	3.7786	4.2491	-0.4705
0	0	1.2476	-1.2476
0	0	0	0.0000

6. Analysis and Discussions:

To apply the Gram-Schmidt orthogonalization process to obtain an orthonormal basis and compute the QR factorization:

- Define the input vectors.
- Perform Gram-Schmidt orthogonalization.
- Normalize the orthogonalized vectors to obtain an orthonormal basis.
- Construct the Q matrix from the orthonormal basis.
- Construct the R matrix from the Q matrix and the original vectors.

<u>Gram-Schmidt orthogonalization</u> is a mathematical process used to transform a set of linearly independent vectors into a set of orthogonal (perpendicular) or orthonormal (orthogonal and normalized to have a length of 1) vectors. This technique is particularly important in linear algebra and numerical computations.

7. Conclusions:

- <u>Gram-Schmidt Orthogonalization</u>: The Gram-Schmidt orthogonalization process is used to transform a set of vectors into an orthogonal or orthonormal basis.
- <u>Orthogonalization</u> is a mathematical process used to transform a set of vectors into a new set of vectors that are orthogonal (perpendicular) to each other.
- In linear algebra, orthogonal vectors have a dot product of zero, which means they are geometrically perpendicular in Euclidean space.
- <u>Normalization</u>: To obtain an orthonormal basis, we normalized the orthogonal vectors, resulting in the orthonormal vectors.
- <u>QR Factorization</u>: We constructed the Q matrix from the orthonormal basis vectors and computed the R matrix using the Q matrix and the original vectors.
- The Gram-Schmidt orthogonalization process was successfully applied to the given set of vectors, resulting in an orthonormal basis represented by the Q matrix and the upper triangular R matrix.

8. Comments

9 Particulars	Marks	
9. Particulars	Maximum	Actual
Results	12	
Procedures/Steps /Write up	05	
Viva	08	
Total	25	

Signature of Staff in-charge

LABORATORY ACTIVITY – 4

Title of the Laboratory Exercise: Consistency of system of equations

1. Introduction and Purpose of Experiment:

In this laboratory exercise, students get familiar with different solution for different matrix. They also learn to solve the equation and find the consistency.

2. Aim and Objectives:

Aim

• Solving the system of equations to know the consistency of the matrix.

Objectives

At the end of this lab, the student will be able to:

• To solve system of equations.

3. Experimental Procedure:

• Students are expected to create a document. Also students are expected to solve the system of equations in the script file.

4. Calculations/Computations/Algorithms:

Solve the following system of equations using Thomas algorithm:

a) $2x_1 - x_2 = 1; -x_1 + 2x_2 - x_3 = 0; -x_2 + 2x_3 - x_4 = 0; -x_3 + 2x_4 = 1$

Program:

```
/MATLAB Drive/syseq.m
1 🗆
       function[]=syseq(A,B)
 2
       [~,n]=size(A);
 3
       rA=rank(A);
 4
       M=[A,B];
 5
       rM=rank(M);
 6
       if rA==rM
            fprintf('The system of eqns is consistent')
 7
 8
            if rA==n
 9
                fprintf('\n The system has unique solution and soln is:\n')
10
                X=A\B;
11
                disp(X)
12
            else
13
                fprintf('\n The system has infinite solutions \n')
14
           end
15
       else
16
            fprintf('\n The system of eqns is inconsistent \n')
17
       end
18
       end
```

Command window:

>> A = [2 -1 0 0; -1 2 -1 0 ; 0 -1 2 -1; 0 0 -1 2]; >> B = [1; 0; 0; 1]; >> syseq(A,B) Result:

```
The system of eqns is consistent
The system has unique solution and soln is:
1.0000
1.0000
1.0000
1.0000
```

b) 2.04 $x_1 - x_2 = 40.8$; $-x_1 + 2.04x_2 - x_3 = 0.8$; $-x_2 + 2.04x_3 - x_4 = 0.8$; $-x_3 + 2.04x_4 = 200.8$

Command window:

>> A = [2.04 -1 0 0; -1 2.04 -1 0; 0 -1 2.04 -1 ; 0 0 -1 2.04];
>> B = [40.8; 0.8; 0.8; 200.8];
>> syseq(A,B)

<u>Result</u>:

The system of eqns is consistent The system has unique solution and soln is: 65.9698 93.7785 124.5382 159.4795

c) $2x_1 + x_2 = 1; 2x_1 + 3x_2 + x_3 = 2; x_2 + 4x_3 + 2x_4 = 3; x_3 + 3x_4 = 4$

Command window:

>> A = [2 1 0 0; 2 3 1 0; 0 2 4 2; 0 0 1 3]; >> B = [1;2;3;4]; >> syseq(A,B)

Result:

```
The system of eqns is consistent
The system has unique solution and soln is:
0.1786
0.6429
-0.2857
1.4286
```

d) 4x + 8y = 8; 8x + 18y + 2z = 18; 2y + 5z + 1.5w = 0.5; 1.5z + 1.75w = -1.75

Command window:

>> A = [4 8 0 0; 8 18 2 0; 0 2 5 1.5; 0 0 1.5 1.75]; >> B = [8;18;0.5;-1.75]; >> syseq(A,B)

Result:

```
The system of eqns is consistent
The system has unique solution and soln is:
0
1
0
-1
```

5. Analysis and Discussions:

- We calculate the rank of matrix A (rank(A)) and the rank of the augmented matrix
 [A|b] (rank augmented). The rank of a matrix represents the number of linearly independent rows or columns.
- If rank(A) is equal to rank augmented and is equal to the number of unknowns (columns in A), then the system is consistent and has a unique solution.
- If rank(A) is equal to rank augmented but less than the number of unknowns, then the system is consistent but has infinitely many solutions (underdetermined).
- If rank(A) is not equal to rank augmented, the system is inconsistent and has no solution.

6. Conclusions:

By comparing the ranks of the coefficient matrix "A" and the augmented matrix [A|b], we can conclude whether the system has a unique solution, infinitely many solutions, or no solution at all. This is a valuable tool for solving and analyzing systems of linear equations in various mathematical and engineering applications.

7. Comments:

9 Particulars	Marks	
	Maximum	Actual
Results	12	
Procedures/Steps /Write up	05	
Viva	08	
Total	25	

Signature of Staff in-charge